Order-Preserving Sparse Coding for Sequence Classification
نویسندگان
چکیده
Abstract. In this paper, we investigate order-preserving sparse coding for classifying multi-dimensional sequence data. Such a problem is often tackled by first decomposing the input sequence into individual frames and extracting features, then performing sparse coding or other processing for each frame based feature vector independently, and finally aggregating individual responses to classify the input sequence. However, this heuristic approach ignores the underlying temporal order of the input sequence frames, which in turn results in suboptimal discriminative capability. In this work, we introduce a temporal-order-preserving regularizer which aims to preserve the temporal order of the reconstruction coefficients. An efficient Nesterov-type smooth approximation method is developed for optimization of the new regularization criterion, with guaranteed error bounds. Extensive experiments for time series classification on a synthetic dataset, several machine learning benchmarks, and a challenging real-world RGB-D human activity dataset, show that the proposed coding scheme is discriminative and robust, and it outperforms previous art for sequence classification.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملLocal structure preserving sparse coding for infrared target recognition
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulat...
متن کاملSparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Breg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012